jInv.ForwardShare
The ForwardShare submodule provides methods that are useful for different forward problems such as mesh-to-mesh interpolation, parallelization, etc. 
List of types and methods
#
jInv.ForwardShare.adjointTest — Method.
function jInv.adjointTest
automatic adjoint test for forward problems. If sensitivity matrix is m x n then this method generates vector v,m of lengths n and m, respectively and computes
err = abs(dot(v,JTw) - dot(w,Jv)) / abs(dot(w,Jv))
Input:
sig::Vector           - current model
pFor::ForwardProbType - forward problem
Optional Inputs:
out::Bool            - controls verbosity (default=false)
tol::Real            - tol on relative error (default=1e-10)
Output:
passed              - true/false depending whether test passed or not
err                 - absolute error
#
jInv.ForwardShare.getNumberOfData — Method.
nd = getNumberOfData(pFor)
Returns number of data in forward problem
#
jInv.ForwardShare.getSensMat — Method.
S = function getSensMat(...)
constructs sensitivity matrix.
WARNING: For large-scale problems this will be prohibively expensive. Use with caution
Inputs:
m    - model
pFor - forward problems
Examples:
S = getSensMat(m,pFor)            # single pFor
S = getSensMat(m,[pFor1;pFor2])   # multiple pFor's
S = getSensMat(m,pForRef)         # pFor as remote reference
#
jInv.ForwardShare.getSensMatSize — Method.
(m,n) = getSensMatSize(pFor)
Returns size of sensitivity matrix where m is the number of data points and n the number of parameters in the model.
Input
pFor - forward problem:: Union{ForwardProbType, Array, RemoteChannel}
This is problem dependent and should be implemented in the respective packages.
#
jInv.ForwardShare.getSensMatVec — Method.
Jv = getSensMatVec(v::Vector,m::Vector,param::ForwardProbType)
Computes matrix-vector product with the Jacobian.
#
jInv.ForwardShare.getSensTMatVec — Method.
JTv = getSensMatVec(v::Vector,m::Vector,param::ForwardProbType)
Computes matrix-vector product with the transpose of Jacobian. Implementation depends on forward problem.